Procedures for taking PRRS out of the breeding herd

Bob Morrison
University of Minnesota
Introduction

• PRRSv costs US swine industry $664M (NPB study 2011)
• Industry direction towards PRRSv elimination, including regional elimination
• Methods to eliminate PRRSv have been validated:
 • Total herd depop/repop, partial depop, and herd closure (Zimmerman et al., 2006)
 • Herd closure is financially advantageous over total depop (Torremorell et al., 2003; Holtkamp 2012)
 • Introduction of gilts is temporarily stopped for at least 7 months
 • Success rate ~ 85%
Chart 1 - Aggregate incidence / week & cumulative since July 1.

1. Data represent 5 systems with 192 sow herds

- % new cases
- 2011
- 2010
- 2009

49%
Chart 4 - EWMA analysis of incidence data

- 2011
- 2009
- 2010
Control

• Objective – live with the virus but *wean PRRSv negative pigs*
 – PRRS negative semen
 – “McRebel” in farrowing
 – Gilt acclimation
 • Resident virus
 • Vaccine
 • No PRRS virus
 – +/- vaccination of sow herd
Sow herd classification

<table>
<thead>
<tr>
<th>Testing</th>
<th>Infected; Positive unstable</th>
<th>Positive stable</th>
<th>Positive stable</th>
<th>Provisionally negative</th>
<th>ELISA negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>IIA</td>
<td>IIB</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>after 4 x 30 over 90 days with virus</td>
<td>after 4 x 30 over 90 days & no virus</td>
<td>>= 60 gilts after >= 60 days</td>
<td>>= 60 samples</td>
<td></td>
</tr>
</tbody>
</table>

Symbols
- ▲: Infected; Positive unstable
- △: Positive stable
- ▲: Positive stable
- ▲: Provisionally negative
- △: ELISA negative

Holtkamp et al. 2010

[PRRS CAP](http://www.PRRS.org)
Elimination

• Herd closure first described by Torremorell et al (2002 / 2003):
 – “A PRRSV-negative population was established from positive sources by managing the gilt pool and batching the pig flow.
 – It appeared that PRRSV infection, indicated by lack of seroconversion in the offspring, eventually either disappeared or became inactive.”

Eliminating virus from sow herd

- Herd closure for farrow to wean sites
 - Load with gilt replacements
 - Close for at least 7 months
 - Expose with resident virus or vaccine

- Negative semen
- McRebel

- Monitor progress in weaned pigs
Change in no. pigs weaned for 52 weeks after closure in 15 herds

Schaefer & Morrison; SHAP 2007
Sampling Strategy

• Serum for virus or antibody
 • “Random” sample
 • 95% / 5% = 60 samples
 • 95% / 10% = 30 “
 • 95% / 20% = 20 “
 • 95% / 30% = 10 “

• Risk-based sampling increases sensitivity
 • Aborted sows, lower viability suckling pigs
Time line for a sow farm

1. **Herd becomes infected**

2. **PRRS not detected at weaning for at least 90 days**

- **I - Positive unstable**
 - PCR + at weaning

- **II A – Positive stable**
 - Seropositive gilt replacements and/or intentional exposure to live PRRSV or any vaccine (live or killed) in the sow herd
Time line for a sow farm

I - Positive unstable
- PCR + at weaning

II A - Positive stable

II B - Positive stable

Herd becomes infected

PRRS not detected at weaning for at least 90 days

Decided to eliminate PRRS virus. No further live virus exposure
Time line for a sow farm

I - Positive unstable
- PCR + at weaning

II A - Positive stable

II B - Positive stable

II - Positive stable

- PRRS not detected at weaning for at least 90 days

Decided to eliminate PRRS virus.
- No further live virus exposure

III - Provisionally Negative
- After > 60 gilts remain seronegative for > 60 days.
Time line for a sow farm

Decided to eliminate PRRS virus. No further live virus exposure

I - Positive unstable - PCR + at weaning

II A - Positive stable
II B - Positive stable

III - Provisionally Negative
- After ≥ 60 gilts remain seronegative for ≥ 60 days.

IV - Negative
- No ELISA +ve sows remain.

Herd becomes infected

PRRS not detected at weaning for at least 90 days
Evaluation of herd exposure methods to produce PRRSv-negative pigs from infected breeding herds (TTNP study)

Linhares D, DVM, MBA; Cano JP, DVM, PhD; Torremorellí M, DVM, PhD; Morrison R, DVM, MBA, PhD.

Presentations: CVM, intl PRRSv symposium, CRWAD, webinar, AASV
Baseline demographic characteristics of the enrolled herds*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>LVI</th>
<th>MLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number enrolled</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Prior immunity</td>
<td>14 (56%)</td>
<td>5 (50%)</td>
</tr>
<tr>
<td>RFLP strain 1-4-4</td>
<td>11 (44%)</td>
<td>6 (60%)</td>
</tr>
<tr>
<td>Herd size (Mean ± SE)</td>
<td>3,498 ± 361</td>
<td>2,353 ± 446</td>
</tr>
<tr>
<td>Time from infection to intervention</td>
<td>22 ± 3</td>
<td>19 ± 4</td>
</tr>
</tbody>
</table>

* There were no significant differences between groups at alpha level of 0.05. Prior immunity and RFLP 1-4-4 (Fisher’s exact, p-values 1.000 and 0.471 respectively), herd size and time from infection to intervention, (t-test, p-values 0.082 and 0.631 respectively)
Monitoring

- Herds were monitored for PRRSv by serum PCR
- Monthly testing, starting at 12 weeks post intervention
- Herds were considered as producing negative pigs when 4 consecutive negative PCRs were obtained.
In general, “200 days” is not enough to achieve TTNP:

Cumulative TTNP - all farms

% herds that achieved TTNP

Weeks post whole-herd inoculation

200 days
Routes of transmission

<table>
<thead>
<tr>
<th>Sow – Sow</th>
<th>Sow-Pig</th>
<th>Pig-Pig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needles</td>
<td>Cross fostering</td>
<td>Cross fostering</td>
</tr>
<tr>
<td>New gilts</td>
<td>Nurse sows</td>
<td>Processing Equipment</td>
</tr>
<tr>
<td>Feed back material</td>
<td></td>
<td>Warming boxes</td>
</tr>
<tr>
<td>Water toughs</td>
<td></td>
<td>Continuous flow farrowing</td>
</tr>
<tr>
<td>Group housing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Translate routes into what happens on the farm
<table>
<thead>
<tr>
<th>Herd PRRS Status</th>
<th>I (positive unstable)</th>
<th>II (positive stable)</th>
<th>III (provisional negative)</th>
<th>IV (negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilt Introductions</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes – Prev. Infected</td>
</tr>
<tr>
<td>Prebreeding vaccines</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prefarrowing vaccines</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Change needles between sows and gilts</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Manure feedback prefarrow</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Manure Feedback prebreeding</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tissue or serum feedback to gilts</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sow Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash all crates with dry time between litters</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Allow part weaning of rooms</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Change needles and blades between litters</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Use of warming tubs/split suckle boxes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Use Processing carts</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Farrowing House Management Practices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movements at less than 24 hours of age only for litter size</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fall back litter (1 nurse sow per 26 crates)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pool small pigs in one litter</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Holding pigs at weaning for quality</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Piglet Movements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manure Feedback</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prefarrowing vaccines</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prebreeding vaccines</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Gilt Introductions</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. Herd PRRS Status
2. I (positive unstable)
3. II (positive stable)
4. III (provisional negative)
5. IV (negative)
TTBP (weeks)

- Mean: 18.45455
- Std Deviation: 12.70818
- Maximum: 55
- Minimum: 0
- Lower Quartile: 8
- Median: 19.5
- Upper Quartile: 24

Reduction of pigs / 1,000 sows: from LCH to TTBP

- Mean: 2194.948
- Std Deviation: 2194.508
- Maximum: 9250.655
- Minimum: 0
- Lower Quartile: 616.805
- Median: 1767.308
- Upper Quartile: 3151.845

www.PRRS.org
Clean Up Costs

• The basic “Jim Lowe Plan”
 – Close herd for 30 weeks
 – Place as many gilts in farm as possible – up to 20 weeks
 – Do offsite breeding project for last 15 weeks to keep making breed target – but only at normal replacement rate
 – IMPLEMENT STANDARD MANGEMENT PRACTICES

• Costs
 – Breeding project – Rent $20,000 per 2500 sows, Extra labor $5,000-10,000 bonus to pay crew to go off site
 – Increased testing - $5000
 – Total $30,000-35,000 – or $13-14 per sow

• Payback time of 10-12 weeks!
Implications

• Half herds required at least 200 days

• Follow protocols

• Better understanding of factors associated with shorter TTNP
Where we are headed

• Voluntary, producer-driven regional control
 o Low – medium density \rightarrow potential elimination.
 o High density \rightarrow wean negative pigs
 o Filter sow farm
 o LVI and/or live virus vaccine

• Increasing sharing of data to facilitate learning
Don’t forget to rate this session on your WPX mobile app! To rate the session, go to Events, click on the session, and then click the ‘Rate this session’ button. Note that you can only rate a session after it has ended, and some devices may not have access to this feature. (If you still need to download the app, type this URL into your web browser: m.core-apps.com/wpx2012) We value your feedback!